State of Alaska Mepsythent of Fish and Game Nomination for Waters Important to Anadromous Fish ### MT EALDING ATHER | | g Number of Waterw | | | | | | |--|--|--|--|--|---|--| | me of Waterway Wolf | | | | | cal name | | | dition Deletion | Correction | Backuj | p Informati | on | | | | | For | Office Use | | | | | | Nomination # | 95 279 | | Land | & hea | 12-30-94 | | | Revision Year: | | R | egional Sup | | Date | | | Revision to: Atlas | | | $C \cdot D$ | Eies | 1/5/95 | | | | Both X | | | | | | | Revision Code: | 2 7 | 2/ | | | 1/5/95 | | | | | - 1 | Draft | ed | Date | | | | OBSERVAT | ION INFORMAT | CION | | | | | Species | Date(s) Observed | Spawning | Rearing | Migration | Anadromous | | | See attachments | | | | 1112 | | | | PINK | SEE ATTACHED | | | | | | | LIION | | | | | | | | CHOM | | | | | | | | SOCKEYE PORTANT: Provide all pawning, rearing or mig | supporting documen | us fish, incl | luding: numb | per of fish a | nd life stage | | | CHOM SOCKEYE PORTANT: Provide all awning, rearing or mig served; sampling metho tach a copy of a map s well as any other in aring habitat; location | supporting document
gration of anadromo
ods, sampling durat
showing location of
aformation such as: | us fish, inclinion and area mouth and of specific st | luding: numb
sampled; c
bserved upp
cream reache | per of fish a
copies of fie
er extent of
es observed a | nd life stage
ld notes; etc
each species | | | CHOM SOCKEYE PORTANT: Provide all awning, rearing or mig served; sampling method tach a copy of a map served as any other in aring habitat; location | supporting document
gration of anadromo
ods, sampling durat
showing location of
aformation such as: | us fish, inclinion and area mouth and of specific st | luding: numb
sampled; c
bserved upp
cream reache | per of fish a
copies of fie
er extent of
es observed a | nd life stage
ld notes; etc
each species | | | CHOM SOCKEYE PORTANT: Provide all awning, rearing or mig served; sampling method tach a copy of a map served as any other in aring habitat; location | supporting document
gration of anadromo
ods, sampling durat
showing location of
aformation such as: | us fish, inclinion and area mouth and of specific st | luding: numb
sampled; c
bserved upp
cream reache | per of fish a copies of fie er extent of es observed a etc. | nd life stage ld notes; etc each species as spawning c | | | CHOM SOCKEYE PORTANT: Provide all awning, rearing or mig served; sampling method tach a copy of a map served as any other in aring habitat; location | supporting document
gration of anadromo
ods, sampling durat
showing location of
aformation such as: | us fish, inclinion and area mouth and of specific st | luding: numb
sampled; c
bserved upp
cream reache | per of fish a copies of fie er extent of es observed a etc. | nd life stage 1d notes; etc each species as spawning constant of the spawning | | | SOCKEYE PORTANT: Provide all | supporting document
gration of anadromo
ods, sampling durat
showing location of
aformation such as: | us fish, inclinion and area mouth and of specific st | luding: numb
sampled; c
bserved upp
cream reache | per of fish a copies of fie er extent of es observed etc. | nd life stage ld notes; etc each species as spawning c | | | CHOM SOCKEYE PORTANT: Provide all awning, rearing or mig served; sampling methotach a copy of a map swell as any other in aring habitat; location mments: | supporting document of anadromous, sampling durat showing location of aformation such as: | us fish, inclicion and area mouth and of specific stights of any | luding: numb
sampled; c
bserved upp
ream reache
barriers; | per of fish a copies of fie er extent of es observed a etc. JA SIA HARITA | CEIVED N 0 4 1995 THE OF ALASKA SH & GAME T & RESTORATIO | | | CHOM SOCKEYE PORTANT: Provide all awning, rearing or mig served; sampling methotach a copy of a map swell as any other in aring habitat; location mments: me of Observer (please | supporting document gration of anadromous, sampling durate showing location of aformation such as: ons, types, and here are print) | us fish, inclinion and area mouth and of specific st | luding: numb
sampled; c
bserved upp
cream reache
barriers; | JA SIA HAPITA NATIONAL PAI | CEIVED N 0 4 1995 THE OF ALASKA SH & GAME T & RESTORATIO | | | CHOM SOCKEYE PORTANT: Provide all awning, rearing or mig served; sampling method tach a copy of a map is well as any other in aring habitat; location mments: me of Observer (please te: 4704,1994 Signature) | supporting document of anadromous, sampling durat showing location of aformation such as: | us fish, inclicion and area mouth and of specific stights of any | luding: numb
sampled; considered upp
ream reached barriers; | JA SIA HAPITA NATIONAL PAI GLACIER BAY & PRESER | N 04 1995 THE OF ALASKA SH & GAME T & RESTORATIONAL PA | | | CHOM SOCKEYE PORTANT: Provide all awning, rearing or mig served; sampling method tach a copy of a map is well as any other in aring habitat; location mments: me of Observer (please te: 4 Day 1994 Signature) | supporting document gration of anadromous, sampling durate showing location of aformation such assons, types, and here are print) Chad a grature: | us fish, inclicion and area mouth and of specific stights of any | luding: numb
sampled; c
bserved upp
cream reache
barriers; | JA SIA HARITA NATIONAL PAI GLACIER BAY | CEIVED N 0 4 1995 TE OF ALASKA SH & GAME T & RESTORATIONAL PA | | | Adfghabno | Npsno | Strmkm | Date | Species | Li | No_live | No_dead | Source | |-----------|-------|--------|----------|---------|----|---------|---------|---------------| | 114-77 | 336.0 | | 08/15/78 | | | 0 | 0 | Milner 1989 | | 114-77 | 336.0 | | 08/15/79 | | | 0 | 0 | Milner 1989 | | 114-77 | 336.0 | | 09/15/80 | | | 0 | 0 | Milner 1989 | | 114-77 | 336.0 | | 09/15/81 | | | 0 | 0 | Milner 1989 | | 114-77 | 336.0 | | 08/15/83 | | | 0 | 0 | Milner 1989 | | 114-77 | 336.0 | | 09/15/85 | | | 0 | 0 | Milner 1989 | | 114-77 | 336.0 | | 07/29/89 | | | 0 | 0 | Blackie 1989 | | 114-77 | 336.0 | | 08/08/92 | | | 0 | 0 | Milner 1994 | | 114-77 | 336.0 | | 08/14/92 | | | 0 | 0 | Milner 1994 | | 114-77 | 336.0 | | 1 1 | ONGO | | 0 | 0 | Prather and | | 114-77 | 336.0 | | 09/24/89 | ONGO | S | 0 | 3 | Blackie 1989 | | 114-77 | 336.0 | | 08/16/91 | ONGO | S | 350 | 5 | Milner 1994 | | 114-77 | 336.0 | | 08/30/91 | ONGO | S | 486 | 89. | Milner 1994 | | 4-77 | 336.0 | | 09/04/91 | ONGO | S | 70 | 150 | Schroeder | | 114-77 | 336.0 | | 08/01/93 | ONGO | S | 932 | 0 ' | Milner 1994 | | 114-77 | 336.0 | | 08/06/93 | ONGO | S | 1324 | 0 | Milner 1994 | | 114-77 | 336.0 | | 08/13/93 | ONGO | S | 1793 | 32 - | Milner 1994 | | 114-77 | 336.0 | | 08/28/93 | ONGO | S | 1688 | 1106 | Milner 1994 | | 114-77 | 336.0 | 0-1.4 | 08/30/93 | ONGO | S | 2000 | 200 | Kondzela 1993 | | 114-77 | 336.0 | | 09/02/93 | ONGO 4 | S | 853 | 2260 | Milner 1994 | | 114-77 | 336.0 | | 09/12/93 | ONGO Q | s | 181 | 2452 | Milner 1994 | | 114-77 | 336.0 | | 08/30/94 | ONGO | S | 150 | 0 | Kondzela 1994 | | 114-77 | 336.0 | | 09/04/94 | ONGO | S | 29 | 0 | Kondzela 1994 | | 114-77 | 336.0 | | 09/24/89 | ONKE | S | 1 | 0 | Blackie 1989 | | 114-77 | 336.0 | | 09/04/91 | ONKE | S | 44 | 20 | Schroeder | | 114-77 | 336.0 | | 08/27/92 | ONKE | S | 2 | 0 | Milner 1994 | | 114-77 | 336.0 | | 09/06/92 | ONKE | s | 25 | 0 | Milner 1994 | | 114-77 | 336.0 | | 08/28/93 | ONKE | S | 6 | 0 | Milner 1994 | | 114-77 | 336.0 | 0-1.4 | 08/30/93 | ONKE | S | 10 | 0 | Kondzela 1993 | | -77 | 336.0 | | 09/02/93 | ONKE | S | 9 | 0 | Milner 1994 | | 114-77 | 336.0 | | 09/12/93 | ONKE | S | 6 | 2 | Milner 1994 | | 114-77 | 336.0 | | 08/30/94 | ONKE | S | 19 | 0 | Kondzela 1994 | | 114-77 | 336.0 | | 09/04/94 | ONKE | S | 7 | 0 | Kondzela 1994 | | 114-77 | 336.0 | | 08/06/93 | ONNE | S | 2 | 0 | Milner 1994 | | 114-77 | 336.0 | | 08/13/93 | ONNE | S | 3 | 0 | Milner 1994 | | 114-77 | 336.0 | | 08/28/93 | ONNE | S | 10 | 0 | Milner 1994 | | 114-77 | 336.0 | 0-1.4 | 08/30/93 | ONNE | s | 9 | 0 | Kondzela 1993 | | 114-77 | 336.0 | | 09/02/93 | ONNE U | s | 17 | 2 | Milner 1994 | | 114-77 | 336.0 | | 09/12/93 | ONNE | S | 9 | 4 | Milner 1994 | | 114-77 | 336.0 | | 08/30/94 | ONNE | S | 19 | 0 | Kondzela 1994 | | 114-77 | 336.0 | | / / | SAMA | | 0 | 0 | Prather and | | 114-77 | 336.0 | | 08/01/77 | SAMA \ | F | 0 | 0 | Milner 1978 | | 114-77 | 336.0 | | 09/24/89 | SAMA | J | 0 | 0 | Blackie 1989 | | 12/09/94 | | | | - | , | | | Page 1 | | Adfghabno | Npsno Strmkm | Date | Species | Li | No_live | No_dead | Source | |-----------|--------------|----------|---------|----|---------|---------|---------------| | 114-77 | 336.0 | 08/24/92 | SAMA | J | 0 | 0 | Kondzela 1992 | | 114-77 | 336.0 | 08/30/94 | SAMA | A | 0 | 0 | Kondzela 1994 | | 114-77 | 336.0 | 08/30/94 | SAMA | J | 0 | 0 | Kondzela 1994 | 2 ## United States Department of the Interior ### NATIONAL PARK SERVICE Glacier Bay National Park and Preserve P.O. Box 140 Gustavus, Alaska 99826-0140 14 December 1994 Roger Harding Alaska Department of Fish and Game Division of Sport Fish P.O. Box 240020 Douglas, AK 99824 Dear Mr. Harding, **RECEIVED** JAN 0# 1995 STATE OF ALASKA FISH & GAME HABITAT & RESTORATION Enclosed please find information on 9 streams within Glacier Bay National Park and Preserve (GBNPP). We wish to submit this information for your review and propose these streams be included in the Anadromous Waters Catalog (AWC) and associated Atlas. Over the past 2 years we have conducted an exhaustive search of all pertinent information relating to the distribution and abundance of salmonids and other anadromous and freshwater species in streams throughout GBNPP. Additionally we have developed a comprehensive database of this information. Currently we are nearing final analysis and write-up. The information submitted for the 9 streams currently proposed (8 additions and 1 correction) for anadromous waters designation was extracted from this database. A draft data dictionary documenting and defining field attributes is enclosed to assist in evaluation of the summary queries for each stream system. In addition, we have enclosed photocopies of portions of documents from which this information was obtained. Many of the photocopied documents are portions of larger documents (*i.e.* field notebooks, unpublished surveys, final reports, journal articles etc.). We have also enclosed a draft bibliography to provide additional documentation of the original information sources. Photocopies of the original sources in entirety would be superfluous. Streams are generally referenced using the unique National Park Service (NPS) number and also ADF&G Habitat and Reclamation as well as Commercial Fisheries Division numbers. However, photocopies of the original source documents dated between 1963 and 1966 generally refer to specific streams using an outdated NPS numbering system. These numbers are indicated and may be referenced from map sections associated with the USNPS (1963) document. We hope the information submitted in this packet will be sufficient for inclusion of these streams in the AWC and Atlas. One of my staff, Chad Soiseth, spoke with Ed Weiss, at the Habitat and Reclamation Division in Anchorage and requested that this information be included in the 1995 revision to the Catalog and Atlas. Ed agreed that this information could be included in the 1995 Catalog and Atlas provided he received it in the Anchorage office by December 20. Ed also pointed out that following your review the nomination forms would require Regional Habitat Biologist Lana Shea's approval. We greatly appreciate your effort in expediting the nomination and approval process. Should you have any questions or require additional information please contact Chad Soiseth or the Chief of Resource Management, Mary Beth Moss. Thank you for your time and attention on this matter. Sincerely, Marvin O. Jensen Superintendent # Field attributes and data dictionary for an inventory data base: Biological characteristics of stream systems and salmonid distribution and abundance (stream_s.dbf) ### DRAFT (Sept. 1994 version) Attributes or field names used in the data base are listed below. adfgcfno (10 chars.)-this Alaska Department of Fish and Game (ADF&G) Commercial Fisheries Division number often corresponds with the ADF&G Habitat Division number (adfghabno) below. However, this number is always abbreviated relative to the adfghabno. The first five digits are generally identical to the adfghabno but are followed by a 3 digit number which is a derivation of the 5 digit adfghabno (see below). The suffix of this 3 digit number lacks the stream order identifier and the final digit is omitted. Thus the adfgcfno for the Bartlett River is 114-70-090. Occasionally, adfgcfnos differ markedly from adfghabnos. adfghabno (27 chars.)-this designation is the ADF&G Habitat and Reclamation Division 's numbering system. Some streams, rivers and lakes have a unique identifying number as listed in the Catalog of Waters Important for Spawning, Rearing or Migration of Anadromous Fishes (AWC) and associated Atlas. The number begins with a body of saltwater identified by the ADF&G statistical fishing district number in 1982. Each district has a 5 digit number (a 3 digit number and a 2 digit number separated by a hyphen). The first order streams (flowing directly into saltwater and lacking tributaries; this ordering method is easily confused with the universally accepted Strahler (1959) method which orders streams from the headwaters downstream; see stream order definition in the Field Attributes and Data Dictionary for physchars.dbf) are identified by a 5 digit number added to the fish district number into which it flows. This second group of five digits is started by the number 1 which signifies a first order or primary stream. For example, the Bartlett River is 114-70-10900 (114-70 identifies the statistical fishing district and 10900 is the first order stream within that district). A second order stream branching from a first order stream is identified using the same base number (114-70-10900) plus a four digit number indicating that specific tributary. In the example for the Bartlett River this number is 2009. Thus the stream number for this second order stream would be 114-70-10900-2009. Third, fourth and higher order streams are numbered in the same way by adding a four digit number for each branch. The first digit for each branch sequence always indicates the stream order. The last digit in the number sequence used to identify second and higher order streams is even numbered if the tributary branches to the right (facing upstream) and odd numbered if it branches to the left. Lakes are designated by a number sequence with a first digit of 0. In the Bartlett River example, a lake occurs along a first order stream. Thus the lake number incorporates the first order stream number (114-70-10900) plus the four digit lake identifier (0010) to give the lake's number as 114-70-10900-0010. **npsno** (5 numeric)-each stream has been assigned a unique identifying number which can be referenced from a master set of 1:63,360 scale topographic maps. Assignment of reference numbers to individual streams is part of a redundant system of referencing entries since streams can also be referenced by ADF&G # (both Comm. Fish and Habitat Division), mouth location (UTM's or lat. long.), or stream name. **strmkm** (5 characters)-is the extent of survey efforts from the lower section of a survey reach to the upper section surveyed. Distance is measured from the upper limit of the rye grass at the mouth toward the head of a stream. date (mm/dd/yy)-is the date that the particular survey or research was conducted. spp (4 characters)-are the species observed in a stream system according to accounts from published and unpublished literature sources. Species designations are by the first two letters of the scientific name (each of genus and species). (see Morrow, J.E. 1980. The freshwater fishes of Alaska. Alaska Northwest Publishing Company, Anchorage, AK. 248 pp.) | Scientific name | Species designation | |---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Oncorhynchus tschawytscha | ONTS | | Oncorhynchus nerka | ONNE | | Oncorhynchus gorbuscha | ONGO | | Oncorhynchus keta | ONKE | | Oncorhynchus kisutch | ONKI | | Salvelinus malma | SAMA | | Oncorhynchus clarki | ONCL | | Oncorhynchus mykiss | ONMY | | Gasterosteus aculeatus | GAAC | | Cottus alleuticus | COAL | | Cottus cognatus | COCO | | | COSP | | Leptocottus armatus | LEAR | | Thaleichthys pacificus | THPA | | Lampetra tridentatus | LATR | | Platichthys stellatus | PLST | | | SASP | | | TRSP | | | UNSP | | | Oncorhynchus tschawytscha Oncorhynchus nerka Oncorhynchus gorbuscha Oncorhynchus keta Oncorhynchus kisutch Salvelinus malma Oncorhynchus clarki Oncorhynchus mykiss Gasterosteus aculeatus Cottus alleuticus Cottus cognatus Leptocottus armatus Thaleichthys pacificus Lampetra tridentatus | lifestg (1 character)-is the stage of development observed and reported for each species. A single stage of development or all life stages may have been observed for each species in any stream system. Life stages and definitions are based on Milner (1989) and for salmonids generally include: 1.) fry (F)-small fish or young-of-the-year fish (YOY) generally \leq 30-70 mm total length depending on time of year (*i.e.* May-Oct.), 2.) juveniles (J)-fish in their second summer of life (age 1+ yrs.) and generally \geq 70 mm, 3.) adults (A)-sexually mature fish, and 4.) spawning adults (S)-adult fish observed to be in breeding or spawning coloration. **no_liv** (6 numeric)-is the number of live individuals of each species / life stage observed during a particular visit. **no_dead** (6 numeric)-similar to above is the number of dead individuals of each species / life stage observed during a particular visit. Typically this refers to adult Pacific salmon post spawning. source (40 characters)-is the source (published or unpublished) from which the information was taken. Enter the last name of the primary author (first letter capitalized) followed by the date (yr.) of publication, date the unpublished report was prepared, or the date the survey was conducted. mthd (1 character)-is the general method used to conduct the survey. Methods include A=fixed wing aircraft, H=helicopter, F=foot, B=boat, S=seine, R=angling, E=electrofishing, D=dip netting, M=minnow trapping, T=trapping (including fyke and hoop traps), G=gill netting, and U=unknown methods. reliab (1 numeric)-is a measure of the reliability of the data based on what is known about survey methods and procedures for each survey team or surveyor where: - 3= highly certain (Considerable sampling data is available and distribution ecology and preferred habitats are generally well documented within a watershed). - 2= moderately certain (Some sampling data is available and distribution, preferred habitats, and ecology are documented in similar watersheds). - 1= reasonable inference (Little or no sampling data available. Information on species distributions, ecology and preferred habitats documented in similar watersheds. Information may be second hand information or through personal conversation). Examples: Aerial surveys assume that certain species are present in a stream during counts depending on time of year and thus species is generally inferred with no sampling data to substantiate species determinations (reliab=1). Foot surveys generally allow much more positive identification of species and this is further substantiated when capture information provides "hands-on" evidence of earlier developmental stages (reliab=2). Few workers in GBNP&P, (ADF&G, Milner, and Murrell), exhibit highly certain reliability (reliab=3). # Submitting Stream Survey Information to ADF&G Habitat Division for Anadromous Stream Nomination ### December 1994 ### Background: The following streams were selected from the biological (stream_s. dbf) database based on the criteria of required documentation of the occurrence of at least two species of anadromous salmonids. We evaluated the amount of information for each stream system and selected eight streams for addition and one stream (Vivid Creek) for correction. The ADF&G Anadromous Waters Catalog (AWC) and Atlas currently list the south outlet rather than the northwest outlet of Vivid Lake. See information below. ### Prior to submission: - *We compiled information from ring binders, maps and queried the database for information on each stream and hardcopies (complete file) of all available information were organized by stream into file folders. These files are to be submitted to ADF&G. - *Database summaries (queries) were checked against source documents. - *The known upper and lower boundaries of distribution for each species were indicated on maps of each stream. This is reportedly a fairly strict requirement according to Ed Weiss, ADF&G Habitat and Restoration Biologist overseeing the AWC and Atlas. - *The location, type, and height of any know barrier or obstruction was noted. - *The draft bibliography indicating source documents for proposed Catalog and Atlas streams will be provided to ADF&G. We will also provide a draft of the data dictionary describing the fields in the database to aid in interpretation of the queries. - *The effect of designation on research and stream monitoring was investigated with both the state and Regional Office. We also looked into the possibility of submission being misconstrued by ADF&G as an admission by the NPS that the state has jurisdiction over Park waters (see letter from Ross Kananaugh, ARO). #### Stream listing: The streams for consideration are listed below by ADF&G Habitat and Restoration Division statistical unit number (ADF&GHAB#), National Park Service number (NPS#), and stream name if applicable. The status of our evaluation was listed along with a brief summary of the available information. | ADF&GHAB# | NPS# | Stream Name | Status . | |-----------|------|-------------|------------------------| | 114-60 | 165 | Unnamed | Not submitted to ADF&G | Three sources of information exist for this stream. However, only a single survey conducted by Selig in August of 1982 provides evidence of spawning anadromous salmonids. On 28 August 323 chum and 22 pink salmon were observed spawning in this system. According to Selig "the spawning was confined to the intertidal area and slightly above, as the water volume decreased as the stream entered the woods, forking into even smaller branches". Because spawning appears to be confined to the intertidal zone and rearing or spawning salmonids were not documented to occur higher up in the watershed it seems unlikely that this stream would meet the requirements. 114-60 161 Dog Hole Zay Head Submitted Two records of 50 and 5 pink salmon in 1963 and 1982, respectively, exist for this system. Four records of 10-400 chum salmon from 1960-1982 exist. One record in 1964 of 125 salmon (no species indicated) exists. Records indicating location along stream reach indicate that salmon were observed "just above the intertidal zone". 114-60-10200 166.5 Unnamed Not Submitted Inadequate information. d- world that 114-70 300 Wolf Creek Not submitted. Two records of 48 and 350 chum salmon in 1969 and 1984, respectively, exist for this stream. One record of a single coho salmon fry was also reported on 1 Sept. 1984. A series of falls or cascades 7-10 ft. in height and approximately 300-450 yards above tidal influence presents a potential barrier to anadromous fish passage upstream. Reports of chum salmon were all below the barrier. 114-70 369.0 York Creek Not Submitted Inadequate information. 114-71 203 SW Berg Bay Not submitted. Three hundred pink salmon were reported in August of 1959 by Mattson et al. (1959) with no location given. Huneke and Owens reported 30-40 chum salmon in August of 1966 but reported no location. 114-73 7 227 Oystercatcher Creek *Undecided* The 1975 Up-Bay ranger (Unknown 1975) reported 300-400 pink salmon in the first 1/4 mile of this system on 21 August 1975. Chris Kondzela (19901) reported < 100 pink salmon present in the mouth and intertidal section of this stream on 22 August 1990. Based on information by Woll (1970), this stream may support an anadromous run of Dolly Varden. 114-73 216 Wood Creek Submitted Chum salmon were first reported in 1961 with sporadic and poorly quantified reports in 1962 and 1969. A dozen pink and chum salmon were reported by Cornelius and Haeker (1969) in the lower tidal influenced portion of this system in early September 1969. Kondzela (1990) reported 32 pink and 28 chum salmon in the intertidal area of this stream on 5 September 1990.. A 20 ft. falls ca. 300 yards upstream (just below outlet of lower pond) may possibly restrict or limit fish passage to Wood Lake. 114-75 101 NW Vivid Lake Stream Submitted as correction. The southern outlet has been designated in the Catalog and Atlas. However, this tributary channel is narrow, steep and extremely shallow and no observations of anadromous species exist. Almost all observations of salmonids in the Vivid Lake system have been restricted to the northwest outlet. Seventy-one juvenile cutthroat trout and one adult were reported by Selig and Heacox (1984). Seventeen records of adult pink salmon (ranging from 2-7,000 spawners) from 1970-1994 exist. Twenty records ranging from 22-2,200 adult chum salmon exist for the years 1976-1994. Seven records of up to 40 fry, juvenile or adult coho salmon exist from 1977-1990. Twenty-one records of juvenile and adult sockeye salmon for 1970-1994 exist in the database. Lake access is currently restricted during low discharge-base flow periods due to the phenomenon of isostatic rebound (Kondzela 1993, 1994, Milner pers. comm.). Milner (1992) indicates that the lake is accessible only during periods of high discharge. Dr. Milner further suggests that the sockeye run will not be sustained when lake access is finally severed, however, spawning currently may occur in the stream and fry may migrate into the lake during periods of increased flow. Kondzela and Milner were contacted regarding accessibility and extent of anadromous species distribution in the stream. A barrier (waterfall or series of cascades) ca. 0.8 km upstream of lake prohibits fish passage further upstream (Blackie 1989). 114-77 303 Nunatak Creek Submitted Nineteen records of pink salmon between 1975 and 1994 ranging from tens to thousands of spawners have been reported. Twelve records of 2-750 chum salmon exist for 1985-1994. Eight records of fry, juvenile and spawning adult coho salmon (in low numbers) between 1977 and 1985 are evident. Thirteen records of juvenile and adult sockeye exist between 1975 and 1994. Numbers of live spawning adult sockeye range from 6-200. Apparently salmon occur in a side channel as well as in the main channel upstream above the lake(s) and in the inlet channel to the lower lake (ca. 0-1.5 km above the upper extent of the intertidal zone. According to Milner and Kondzela (pers. comm.) pink and chum salmon occur up to the lower lake and sockeye have been documented to occur in both lakes and in the inlet to the lower lake. 114-77 331.0 Unnamed Not Submitted Inadequate information. 114-77 336 Wolf Point Creek Submitted Fourteen records of pink salmon between 1989 and 1994 ranging from 3 to more than 2,500 spawners are evident. Ten records of chum salmon (ranging from 1 to 44 live spawners) exist for the period 1989-1994. Seven records of 2-19 adult sockeye exist for 1993 and 1994. A barrier (waterfalls) below proglacial Lake Lawrence (Muir Glacier Remnant) prohibits salmonid access to the lake (Blackie 1989, Milner 1992, Kondzela 1994). Two sections of falls ca. 20-30 ft. in height occur in the reach ca. 20 m directly below the outlet to Lawrence Lake (Milner, pers. comm.). All salmonid species are distributed up to the base of the first falls. 114-77 308 Gull Creek Submitted. Thirteen records of 5 to more than 1,200 adult pink salmon from 1989 to 1994 exist. Fifteen records of 5 to 400 adult sockeye spawners exist for 1991-1993. According to Milner (pers. comms.), the inlet streams to Gull Lake have been dry during the last two summers (1993, 1994). Both species occur up to and in the lake during the spawning period. Pinks have been reported to aggregate along the east side and sockeye along the west shore (Kondzela, pers. comm.). Salmonid distribution in the mainstem above the lake is currently unknown. 116-11 2 Unnamed Submitted Twelve to sixteen hundred adult pink salmon were reported within this system on 10 and 21 August, 1983, respectively. Adult pink salmon were observed from the mouth to ca. 800 yards upstream. Seventeen YOY and two 1+ age cohos were caught among 5 minnow traps fished for 1 hour on 21 Aug. 1983 approximately 700 yards upstream of the mouth. 116-11 Unnamed Not Submitted Inadequate information. 116-11 6 Dixon River Submitted Eight records of 1-18 juvenile coho salmon exist for 1974. Four records of 1-34 juvenile and adult sockeye salmon exist. The limited existing information on this system is restricted to Murrell (1975). This system is a turbid meltwater system with probably little hydrological control on discharge by the associated lake basins. Lake basins are small and located in sub-basins. Several tributary streams are fed directly by Brady Glacier meltwaters.